Abstract

An interacting electron liquid in two (2D) and three (3D) dimensions may undergo a paramagnetic-to-ferromagnetic quantum spin polarization transition at zero applied magnetic field, driven entirely by exchange interactions, as the system density (n) is decreased. This is known as Bloch ferromagnetism. We show theoretically that the application of an external magnetic field (B), which directly spin polarizes the system through Zeeman spin splitting, has an interesting effect on Bloch ferromagnetism if the applied field and carrier density are both decreased (from some initial applied high magnetic field at a high carrier density) in a power-law manner, B similar to n(p). For p

p(c), the system may undergo two transitions if starting from the fully spin-polarized state: first, a weak second-order transition at high density and field from the field-induced fully polarized phase to the partially polarized phase; and then, at a lower field and density, a reentrant first-order transition back to the fully spin-polarized phase again with a single Fermi surface.

Publication Details
Publication Type
Journal Article
Year of Publication
2021
Volume
104
DOI
10.1103/PhysRevB.104.L100405
Journal
Physical Review B
Contributors