The microscopic laws of physics are symmetric under time reversal. Yet, most natural processes that we observe are not. The emergent asymmetry between typical and time-reversed processes is referred to as the arrow of time. In quantum physics, an arrow of time emerges when a sequence of measurements is performed on a system. We introduce quantum control tools that can yield dynamics more consistent with time flowing backward than forward. The control tools are based on the explicit construction of a Hamiltonian that can replicate the stochastic trajectories of a monitored quantum system. Such Hamiltonian can reverse the effect of monitoring and, via a feedback process, generate trajectories consistent with a reversed arrow of time. We show how to exploit the feedback process to design a continuous measurement engine that draws energy from the monitoring process, or to simulate the backward-in-time dynamics of an open quantum system.