Abstract

The Aubry-Andre or Harper (AAH) model has been the subject of extensive theoretical research in the context of quantum localization. Recently, it was shown that one-dimensional quasicrystals described by the incommensurate AAH model has a nontrivial topology. In this Letter, we show that the commensurate off-diagonal AAH model is topologically nontrivial in the gapless regime and supports zero-energy edge modes. Unlike the incommensurate case, the nontrivial topology in the off-diagonal AAH model is attributed to the topological properties of the one-dimensional Majorana chain. We discuss the feasibility of experimental observability of our predicted topological phase in the commensurate AAH model.

Publication Details
Publication Type
Journal Article
Year of Publication
2013
Volume
110
DOI
10.1103/PhysRevLett.110.180403
Journal
Physical Review Letters
Contributors