Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

Hero
interface of atomic, molecular, optical (AMO) physics, quantum information, and condensed matter (as well as many-body) physics
Group Lead
About

We are a theoretical research group working at the interface of quantum optics, quantum information science, and condensed matter physics.

Postdoc and graduate student positions available: email av[group leader's last name]@gmail.com

Stretched Photons Recover Lost Interference

The smallest pieces of nature—individual particles like electrons, for instance—are pretty much interchangeable. An electron is an electron is an electron, regardless of whether it’s stuck in a lab on Earth, bound to an atom in some chalky moon dust or shot out of an extragalactic black hole in a superheated jet. In practice, though, differences in energy, motion or location can make it easy to tell two electrons apart.One way to test for the similarity of particles like electrons is to bring them together at the same time and place and look for interference—a quantum effect that arises when particles (which can also behave like waves) meet. This interference is important for everything from fundamental tests of quantum physics to the speedy calculations of quantum computers, but creating it requires exquisite control over particles that are indistinguishable.With an eye toward easing these requirements, researchers at the Joint Quantum Institute (JQI) and the Joint Center for Quantum Information and Computer Science (QuICS) have stretched out multiple photons—the quantum particles of light—and turned three distinct pulses into overlapping quantum waves. The work, which was published recently in the journal Physical Review Letters, restores the interference between photons and may eventually enable a demonstration of a particular kind of quantum supremacy—a clear speed advantage for computers that run on the rules of quantum physics.

Corkscrew photons may leave behind a spontaneous twist

Everything radiates. Whether it's a car door, a pair of shoes or the cover of a book, anything hotter than absolute zero (i.e., pretty much everything) is constantly shedding radiation in the form of photons, the quantum particles of light.A twin process—absorption—is usually also present. As photons carry away energy, passers-by from the environment can be absorbed to replenish it. When absorption and emission occur at the same rate, scientists say that an object is in equilibrium with its environment. This often means that object and environment share the same temperature.Far away from equilibrium, new behaviors can emerge. In a paper published August 1, 2019 as an Editors’ Suggestion in the journal Physical Review Letters, scientists at JQI and Michigan State University suggest that certain materials may experience a spontaneous twisting force if they are hotter than their surroundings.

Gorshkov receives early-career research award

Alexey Gorshkov, a JQI Fellow and a Fellow of the Joint Center for Quantum Information and Computer Science, has received a Presidential Early Career Award for Scientists and Engineers (PECASE). The honor, which is the most prestigious offered by the United States Government to young researchers, was announced July 2. More than 300 scientists and engineers around the country were recognized by PECASE this year for contributions to their respective fields, as well as for their accomplishments in scientific leadership, education, and outreach. This was the first time the award has been given out since 2017, and the winners included researchers who were nominated by federal agencies from 2015-2017.