Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

We are a theoretical research group working at the interface of quantum optics, quantum information science, and condensed matter physics.
Postdoc and graduate student positions available: email av[group leader's last name]@gmail.com
Gorshkov student, Kevin Qian, wins 2nd place in prestigious international science fair
Kevin Qian of Montgomery Blair High School placed 2nd in the Physics and Astronomy category at the International Science and Engineering Fair (ISEF) 2019 with his research topic “Heisenberg-Scaling Measurement Protocol for Analytic Functions with Quantum Sensor Networks.” Qian worked with Adjunct Associate Professor Alexey Gorshkov and graduate student researcher Zachary Eldredge in the University of Maryland Department of Physics, the Joint Quantum Institute (JQI), and the Joint Center for Quantum Information and Computer Science (QuICS).
Cold atoms offer a glimpse of flat physics
These days, movies and video games render increasingly realistic 3-D images on 2-D screens, giving viewers the illusion of gazing into another world. For many physicists, though, keeping things flat is far more interesting. One reason is that flat landscapes can unlock new movement patterns in the quantum world of atoms and electrons. For instance, shedding the third dimension enables an entirely new class of particles to emerge—particles that that don’t fit neatly into the two classes, bosons and fermions, provided by nature. These new particles, known as anyons, change in novel ways when they swap places, a feat that could one day power a special breed of quantum computer. But anyons and the conditions that produce them have been exceedingly hard to spot in experiments. In a pair of papers published this week in Physical Review Letters, JQI Fellow Alexey Gorshkov and several collaborators proposed new ways of studying this unusual flat physics, suggesting that small numbers of constrained atoms could act as stand-ins for the finicky electrons first predicted to exhibit low-dimensional quirks.