Hero
Waks Group Hero Image
Group Lead
About

Welcome to the Quantum Photonics Laboratory at the University of Maryland. We are part of the Joint Quantum Institute and the Institute for Research in Electronics and Applied Physics. We are working to develop quantum technology based on nanoscale photonic and semiconductor devices for applications in quantum computation, communication, and sensing.

Semiconductor quantum transistor opens the door for photon-based computing

Transistors are tiny switches that form the bedrock of modern computing—billions of them route electrical signals around inside a smartphone, for instance.

Quantum computers will need analogous hardware to manipulate quantum information. But the design constraints for this new technology are stringent, and today’s most advanced processors can’t be repurposed as quantum devices. That’s because quantum information carriers, dubbed qubits, have to follow different rules laid out by quantum physics. 

New hole-punched crystal clears a path for quantum light

Optical highways for light are at the heart of modern communications. But when it comes to guiding individual blips of light called photons, reliable transit is far less common. Now, a collaboration of researchers from the Joint Quantum Institute (JQI), led by JQI Fellows Mohammad Hafezi and Edo Waks, has created a photonic chip that both generates single photons, and steers them around. The device, described in the Feb. 9 issue of Science, features a way for the quantum light to seamlessly move, unaffected by certain obstacles.