Hero
Hafezi group slide image
Group Lead
About

Our group aims to theoretically AND experimentally investigate various quantum properties of light-matter interaction for applications in future optoelectronic devices, quantum information processing, and sensing. Moreover, we explore associated fundamental phenomena, such as many-body physics, that could emerge in such physical systems. Our research is at the interface of quantum optics, condensed matter physics, quantum information sciences, and more recently, machine learning.

Yu-An Chen

Research Areas: 

  • Quantum Information Science
  • Topological physics with light
  • Hybrid quantum systems

Hafezi Elected APS Fellow

JQI Fellow Mohammad Hafezi has been elected as a Fellow of the American Physical Society (APS). He was cited for “pioneering theoretical and experimental work in topological photonics and quantum synthetic matter.”

Compressed Sensing Measurement of Long-Range Correlated Noise (Short Talk + Pre-Print)

Long-range correlated errors can severely impact the performance of NISQ (noisy intermediate-scale quantum) devices, and fault-tolerant quantum computation. Characterizing these errors is important for improving the performance of these devices, via calibration and error correction, and to ensure correct interpretation of the results.

JQI Researchers Generate Tunable Twin Particles of Light

Identical twins might seem “indistinguishable,” but in the quantum world the word takes on a new level of meaning. While identical twins share many traits, the universe treats two indistinguishable quantum particles as intrinsically interchangeable. This opens the door for indistinguishable particles to interact in unique ways—such as in quantum interference—that are needed for quantum computers. While generating a crowd of photons—particles of light—is as easy as flipping a light switch, it’s trickier to make a pair of indistinguishable photons. And it takes yet more work to endow that pair with a quantum mechanical link known as entanglement. JQI researchers and their colleagues describe a new way to make entangled twin particles of light and to tune their properties using a method conveniently housed on a chip, a potential boon for quantum technologies that require a reliable source of well-tailored photon pairs.